
Bigtable: A Distributed Storage
System for Structured Data

By Fay Chang, et al. OSDI 2006

Presenter: Xiang Gao

Mar. 28,2013

 Motivation

 Data Model

 APIs

 Building Blocks

 Implementation

 Refinement

 Evaluation

 Lots of data
◦ Web contents, satellite data, user data, email，etc.

◦ Different projects/applications

◦ Hundreds of millions of users

◦ Many incoming requests

 Storage for structured data

 No commercial system big enough

 Low-level storage optimization help
performance significantly

 Distributed multi-level map
 Fault-tolerant, persistent
 Scalable

◦ Thousands of servers
◦ Terabytes of in-memory data
◦ Petabyte of disk-based data
◦ Millions of reads/writes per second, efficient scans

 Self-managing
◦ Servers can be added/removed dynamically
◦ Servers adjust to load imbalance

 A sparse, distributed persistent multi-
dimensional sorted map

 The map is indexed by a row key, a column
key, and a timestamp; each value in the
map is an uninterpreted array of bytes.”

(row, column, timestamp) -> cell contents

 Rows
◦ Arbitrary string
◦ Access to data in a row is atomic
◦ Ordered lexicographically

Row

 Column
◦ Two-level name structure:
 family: qualifier

◦ Column Family is the unit of access control

Column family

 Timestamps
◦ Store different versions of data in a cell
◦ Lookup options
 Return most recent K values

 Return all values

timestamps

 The row range for a table is dynamically
partitioned

 Each row range is called a tablet

 Tablet is the unit for distribution and load
balancing

 Metadata operations
◦ Create/delete tables, column families, change metadata

 Writes
◦ Set(): write cells in a row
◦ DeleteCells(): delete cells in a row
◦ DeleteRow(): delete all cells in a row

 Reads
◦ Scanner: read arbitrary cells in a bigtable
 Each row read is atomic

 Can restrict returned rows to a particular range

 Can ask for just data from 1 row, all rows, etc.

 Can ask for all columns, just certain column families, or specific
columns

 Bigtable uses the distributed Google File
System (GFS) to store log and data files

 The Google SSTable file format is used
internally to store Bigtable data

 An SSTable provides a persistent , ordered
immutable map from keys to values
◦ Each SSTable contains a sequence of blocks

◦ A block index (stored at the end of SSTable) is used to
locate blocks

◦ The index is loaded into memory when the SSTable is
open

 Contains some range of rows of the table

 Built out of multiple SSTables

Index

64K

block
64K

block
64K

block

SSTable

Index

64K

block
64K

block
64K

block

SSTable

Tablet Start:alpha End:apple

 {lock/file/name} service

 Coarse-grained locks

 Each clients has a session with Chubby.
◦ The session expires if it is unable to renew its session lease

within the lease expiration time.

 5 replicas, need a majority vote to be active
◦ Service is functional when majority of the replicas are

running and in communication with one another – when
there is a quorum

 Also an OSDI ’06 Paper

 Single-master distributed system

 Three major components
◦ Library that linked into every client

◦ One master server
 Assigning tablets to tablet servers

 Detecting addition and expiration of tablet servers

 Balancing tablet-server load

 Garbage collection

 Metadata Operations

◦ Many tablet servers
 Tablet servers handle read and write requests to its table

 Splits tablets that have grown too large

BigTable

BigTable Master

Performs metadata ops

and load balancing

BigTable Tablet Server BigTable Tablet Server

Serves data Serves data

Cluster scheduling system GFS Chubby

Holds tablet

data, logs

Holds metadata, handles

master election

Handles failover,

monitoring

BigTable Client

BigTable Client

Library

 Each Tablets is assigned to one tablet
server.
◦ Tablet holds contiguous range of rows
 Clients can often choose row keys to achieve locality

◦ Aim for 100MB to 200MB of data per tablet

 Tablet server is responsible for 100 tablets
◦ Fast recovery:
 100 machines each pick up 1 tablet for failed machine

◦ Fine-grained load balancing:
 Migrate tablets away from overloaded machine

 Master makes load-balancing decisions

 Given a row, how do clients find the location of
the tablet whose row range covers the target
row?

 METADATA: Key: table id + end row, Data: location

 Aggressive Caching and Prefetching at Client side

 A 3-level hierarchy analogous to that of a B+
tree to store tablet location information :
◦ A file stored in chubby contains location of the root

tablet

◦ Root tablet contains location of Metadata tablets

 The root tablet never splits

◦ Each meta-data tablet contains the locations of a set
of user tablets

 Client reads the Chubby file that points to the root
tablet
◦ This starts the location process

 Client library caches tablet locations
◦ Moves up the hierarchy if location N/A

 When a tablet server starts, it creates and
acquires exclusive lock on, a uniquely-
named file in a specific Chubby directory
◦ Call this servers directory

 A tablet server stops serving its tablets if it
loses its exclusive lock
◦ This may happen if there is a network

connection failure that causes the tablet server
to lose its Chubby session

 A tablet server will attempt to reacquire an
exclusive lock on its file as long as the file
still exists

 If the file no longer exists then the tablet
server will never be able to serve again
◦ Kills itself

◦ At some point it can restart; it goes to a pool of
unassigned tablet servers

 Upon start up the master needs to discover
the current tablet assignment.
◦ Obtains unique master lock in Chubby

 Prevents concurrent master instantiations

◦ Scans servers directory in Chubby for live servers

◦ Communicates with every live tablet server

 Discover all tablets

◦ Scans METADATA table to learn the set of tablets

 Unassigned tablets are marked for assignment

 Detect tablet server failures/resumption

 Master periodically asks each tablet server for the
status of its lock

 Tablet server lost its lock or master cannot
contact tablet server:
◦ Master attempts to acquire exclusive lock on the server’s

file in the servers directory

◦ If master acquires the lock then the tablets assigned to
the tablet server are assigned to others

 If master loses its Chubby session then it kills
itself
◦ Election will be triggered

Chubby Server

Tablet server

GFS Chunkserver

SSTable SSTable SSTable

Tablet Tablet Tablet

Tablet server

GFS Chunkserver

SSTable

(replica)

SSTable

SSTable

Tablet Tablet Tablet

(replica)

SSTable

Logical

view:

Physical

layout:
SSTable

X

X X X X

Master

Tablet server

GFS Chunkserver

SSTable SSTable SSTable

Tablet Tablet Tablet

(replica)

SSTable

Logical

view:

Physical

layout:

Tablet

(other tablet servers

drafted to serve other

“abandoned” tablets)

Backup copy of tablet

made primary

Message sent to tablet

server by master

Extra replica of tablet created automatically by GFS

Chubby ServerMaster

 Commit log stores the updates that are
made to the data

 Recent updates are stored in memtable

 Older updates are stored in SStable files

Memory

GFS

Tablet Log

Write Op

Read OpMemtable

SSTSST SST

SSTable Files

 Recovery process
◦ Metadata contains SSTables and redo points

 Reads/Writes that arrive at tablet server

o Well-formedness

o Authorization: Chubby holds the permission list

o Group commit

 Minor compaction – convert the memtable
into an SSTable
◦ At the threshold
◦ Reduce memory usage
◦ Reduce log traffic on restart

 Merging compaction
◦ Periodically
◦ Reduce number of SSTables
◦ Good place to apply policy “keep only N versions”

 Major compaction
◦ Results in only one SSTable
◦ No deletion records, only live data

 Locality groups
◦ Clients can group multiple column families

together into a locality group.

 Compression
◦ Compression applied to each SSTable block

separately

◦ Uses Bentley and McIlroy's scheme and fast
compression algorithm

 Caching for read performance
◦ Scan Cache and Block Cache

 Bloom filters
◦ Reduce the number of disk accesses

 Commit-log implementation
◦ One log per tablet server rather than one log per

tablet

 Speeding up tablet recovery
◦ Minor compaction when tablet moves

 Exploiting SSTable immutability
◦ No need to synchronize accesses to file system

when reading SSTables

◦ Efficient concurrency control -- over rows

◦ Deletes work like garbage collection on
removing obsolete SSTables

◦ Enables quick tablet split: parent SSTables used
by children

 As the number of tablet servers is increased by a factor of
500:
◦ Performance of random reads from memory increases by a factor

of 300.

◦ Performance of scans increases by a factor of 260.

Not Linear!
WHY?

 No detailed argument about how the
imbalance in load prevents good scaling

 The authors claim a very low failure rate,
whereas they also mentioned the
vulnerability in lessons due to many
types of failures, I would like to see how
they improve the failure rate and
corresponding data

 The API does not support standard SQL
query, which may complicate the
application

Thanks

